
MILA Optimisation Crash Course Fall 2024

Lecture 1: September 4
Lecturer: Ryan D’Orazio Scribe(s): Danilo Vucetic

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this crash course only with the permission of the Instructor.

These are the scribe notes for the second edition of the optimisation crash course at MILA organised by
Lucas Maes, Helen Zhang, and Danilo Vucetic. The purpose of this course is to provide proofs for standard
optimisation techniques in order to help practitioners better understand why their algorithms learn. The
course webpage can be accessed here.

1.1 Introduction

We start the second edition of the optimisation crash course with an introduction to some fundamental
topics in convex analysis. Convex analysis studies convex functions and convex sets. It is often used to
underpin proofs and provide intuition towards algorithms in convex optimisation. For instance, using convex
analysis we can often simplify the arguments of a proof, or change the way we view a problem so that it is an
“application, not a complication.” That is to say, we can view optimisation problems as applications of ideas
in convex analysis, and not complications of the problem itself. A great example of this is the application of
constraints to an optimisation problem. We can often rewrite the constraints as part of the objective, rather
than a constraint on the optimisation process, thus simplifying the process of finding a solution.

This lecture will first introduce convex sets and functions, defining some fundamental properties that can be
used to derive the convergence bounds of gradient descent, among others. Then, subgradients are introduced
and an example is provided to show how the combination of subgradients with constrained optimisation
problems can allow us to simplify these problems.

1.2 Convex sets and functions

We start by defining various sets that will be of interest to us in this lecture. Then, convex functions are
defined, as well as some properties of convex functions. We follow Beck [2017, pg. 3, 13-25].

Definition 1.1 (Affine set) An affine set, S contains all lines going through each pair of points in the set:
∀x, y ∈ S, λ ∈ R, λx+ (1− λ)y ∈ S

For example, if we had an affine S and the two unit vectors of R2 : (0, 1), (1, 0) ∈ S, we could then infer that
the set S contained (at least) all points on the line y = −x+1. In fact, this inference is the exact definition
of the affine hull between the two points!

Definition 1.2 (Affine hull) An affine hull, aff(S) contains all the affine combinations of elements in S
(not necessarily an affine set).

aff(S) =

{
K∑
i=1

λixi : K > 0, xi ∈ S, λi ∈ R,
K∑
i=1

λi = 1

}
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Figure 1.1: (Left) The points (0, 1), (1, 0) in a set, presented on the x-y axis (black), (middle) The affine
hull of the set, (right) the convex hull of the set.

Convex sets and hulls can be defined similarly to affine sets and hulls just with the added constraint that
λ ∈ [0, 1].

Definition 1.3 (Convex set) A convex set, C contains all lines between each pair of points in the set:
∀x, y ∈ S, λ ∈ [0, 1], λx+ (1− λ)y ∈ C

Definition 1.4 (Convex hull) A convex hull, conv(S) contains all the convex combinations of elements
in S (not necessarily a convex set).

conv(S) =

{
K∑
i=1

λixi : K > 0, xi ∈ S, λi ∈ [0, 1],

K∑
i=1

λi = 1

}

See Figure 1.1 for images corresponding to each of these concepts. Note that an affine set is convex, but a
convex set cannot be affine. For more information on these sets, such as their properties, see Beck [2017, pg.
3].

To define a convex function, we first need to understand epigraphs and domains.

Definition 1.5 (Domain of a function) The domain of a function f : Rn → (−∞,+∞] is the set of all
inputs x to the function that evaluate to finite outputs: dom(f) = {x : f(x) < ∞}.

Definition 1.6 (Epigraph of a function) The epigraph of a function f : Rn → (−∞,+∞] is the set of
all points that lie above the function: epi(f) = {(x, y) : x ∈ Rn, y ∈ R, f(x) ≤ y}.

Note that we are using functions f : Rn → (−∞,+∞]. These are called proper functions since they don’t
reach −∞, and they are closed if the epigraph of the function is closed. The notion of closedness can be
further explored under its equivalency with lower semi-continuous functions, again, see Beck [2017, pg. 15-
16]. We can also show that proper closed functions attain a minimum over some set of inputs (must be
compact); for more details on this topic see Theorem 2.12 of Beck [2017]. We are finally ready to define
convex functions.

Definition 1.7 (Convex function) A function f : Rn → (−∞,+∞] is convex if its epigraph is a convex
set.
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Figure 1.2: (Left) The epigraph of an indicator function on the set [1, 2]. (Middle) The epigraph of the
maximum between two quadratic functions centered at 0.5 and 1.5. (Right) The epigraph of a piecewise
(upside down ReLU) function, where the red line indicates that there exist convex combinations between
points in the epigraph not in the epigraph, making this function non-convex.

Simple examples of convex functions include the indicator function δC , quadratic functions, and the maximum
over convex functions. Examples of convex and non-convex functions are illustrated in Figure 1.2 By example
of the indicator function, we see that its epigraph is convex so long as the set, C, is convex. Note, a set with
“holes” would allow for convex combinations not in the epigraph, e.g., the set of points including [0, 1], [1.5, 2]
would not have a convex indicator function.

δC(x) =

{
0 if x ∈ C
∞ else

epi(δC) = {(x, y) : x ∈ Rn, y ∈ R, δC(x) ≤ y} = C × R+

We now move on to a fundamental property of convex functions which is used extensively in convex optimi-
sation for proofs of convergence. The following proposition states that any line drawn between two points
in a convex curve will be above the curve.

Proposition 1.8 f is convex if and only if ∀x, y ∈ dom(f),∀λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Proof: ⇒ We already know that the convex combination of any two points in the epigraph of a convex
function is within the epigraph. Thus, we know that ∀v1 = (x1, y1), v2 = (x2, y2) ∈ epi(f),∀λ ∈ [0, 1]

v3 = λv1 + (1− λ)v2 ∈ epi(f)

Since v1, v2, v3 are within the epigraph, and v3 = (x3, y3), we know that evaluating the function at the point
x3 will yield a value within the epigraph. Moreover, the convex combination of y1, y2 must lie above the
function:

f(x3) ≤ y3

f(λx1 + (1− λ)x2) ≤ λy1 + (1− λ)y2
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We are free to choose y1, y2, so we set them to f(x1), f(x2) respectively, and the result is achieved.

⇐ We have that f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). Let f(x1) ≤ y1 and f(x2) ≤ y2. We trivially
recover that

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ λy1 + (1− λ)y2

f(x3) ≤ y3

As such, we can recover the convex epigraph of f , meaning that f is a convex function.

There are other interesting properties of convex functions, such as convexity under a partial minimum, but
we will not cover those topics in these notes. For more information, see Section 2.3 in Beck [2017].

1.3 Subgradients

Subgradients are particularly useful when optimising functions with discontinuous gradients. This is because
they generalise the notion of a gradient to allow for these discontinuities. For more information on non-smooth
optimisation, see the second lecture of the Winter 2024 crash course. We will use a slightly different definition
of subgradients in these notes.

Definition 1.9 (Subgradient inequality) Let f : Rn → (−∞,+∞] be a proper function and let x ∈
dom(f). A subgradient of f at the point x is a vector g such that

f(y) ≥ f(x) + ⟨g, y − x⟩

Definition 1.9 is essentially saying that for a subgradient g, tangent to the surface of the function at x, there
exists a function that underestimates the value of f(y), i.e., the right hand side of the inequality. There
may exist an infinite number of subgradients at the point x. As such, we collect them into a set called
the subdifferential. A quintessential example of a function that obeys these properties is the absolute value
function f(x) = |x|,∀x ∈ R. In this case, we can select subgradients g ∈ [−1, 1] for x = 0.

Definition 1.10 (Subdifferential) The set of all subgradients of f at x is called the subdifferential of f
at x and is denoted by ∂f(x):

∂f(x) = {g ∈ Rn : ∀y ∈ Rn, f(y) ≥ f(x) + ⟨g, y − x⟩}

Definition 1.11 (Subdifferentiability) A function f : Rn → (−∞,+∞] is called subdifferentiable at
x ∈ dom(f) if ∂f(x) ̸= ∅.

Turning again to the indicator function, δC(x) for some x, y ∈ C, we may find its subgradients as follows.
The final line states the subdifferential of the indicator function. Note that this is also called the normal
cone.

δC(y) ≥ δC(x) + ⟨g, y − x⟩
0 ≥ ⟨g, y − x⟩

∂δC(x) = {g ∈ Rn : ∀y ∈ C, 0 ≥ ⟨g, y − x⟩} = NC(x)

We will now state a series of results concerning the non-emptiness of the subdifferential set. These results
essentially state that if a function is convex, it is subdifferentiable over its domain, i.e., it has subgradients.
For these results, we have to define the interior of a set and the relative interior of a set.
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Definition 1.12 (Interior of a set) The interior of a subset S ⊆ X of some space X is the union of all
subsets of S that are open in X. We define the interior with respect to ϵ-balls Bϵ(x) = {p ∈ S : ∥x− p∥ ≤ ϵ}.

int(S) = {x ∈ S : ∃ϵ > 0, Bϵ(x) ⊆ S}

Definition 1.13 (Relative interior of a set) The relative interior of a subset S ⊆ X of some space X is
the interior of the set within the affine hull of the set.

relint(S) = {x ∈ S : ∃ϵ > 0, Bϵ(x) ∩ aff(S) ⊆ S}

Examples of interiors and relative interiors follow. Notice how the relative interior is non-empty when the
subset S is a lower-dimensional subset in a higher-dimensional space.

• S = {x ∈ R : 0 ≤ x ≤ 1}. The interior int(S) = (0, 1) and the relative interior relint(S) = (0, 1) are
the same because the ϵ-ball in both cases is in a single dimension, overlapping with S.

• S =
{
(x, y) ∈ R2 : y = 0, 0 ≤ x ≤ 1

}
. The ϵ-ball is now a set in two dimensions that does not form an

entire subset of S. As such, the interior is empty: int(S) = ∅. The relative interior, however, is still
relint(S) = (0, 1).

• When S is the probability simplex ∆n = conv({e1, e2, · · · , en}) in n dimensions (see the right of Figure
1.1, for example), it occupies an (n − 1)-dimensional subset in n dimensions. Thus, the interior of S
will be empty, but the relative interior will still be defined.

We are now ready to state the non-emptiness results.

Theorem 1.14 (Non-emptiness and boundedness at interior points) Let f : Rn → (−∞,+∞] be a
proper convex function and assume that x ∈ int(dom(f)). Then, ∂f(x) is non-empty and bounded. See
[Beck, 2017, Theorem 3.14] for the proof.

int(dom(f)) ⊆ dom(∂f)

Theorem 1.15 (Non-emptiness and boundedness in relative interior) Let f : Rn → (−∞,+∞] be
a proper convex function and assume that x ∈ relint(dom(f)). Then, ∂f(x) is non-empty and bounded. See
[Beck, 2017, Theorem 3.18].

relint(dom(f)) ⊆ dom(∂f)

Since the relative interior of dom(f) is always non-empty, we can conclude that there always exists a point
in the domain that is subdifferentiable. This result allows us to optimise over lower-dimensional spaces when
operating in higher dimensions!

The final three results state some important facts surrounding the relationship between subgradients and
gradients, the definition of a descent direction, and an important optimality condition.

Theorem 1.16 (Subdifferential at points of differentiability) Let f : Rn → (−∞,+∞] be a proper
convex function and let x ∈ int(dom(f)). If f is differentiable at x, then ∂f(x) = {∇f(x)}. Conversely, if f
has a unique subgradient at x, then f is differentiable at x and ∂f(x) = {∇f(x)}. See [Beck, 2017, Theorem
3.33].

Definition 1.17 (Descent property of descent directions) Let f : Rn → (−∞,+∞] be a proper con-
vex function and let x ∈ int(dom(f)) and assume that d ̸= 0 ∈ Rn is a descent direction of f at x. Then
there exists some ϵ > 0 such that x+ ηd ∈ dom(f) η ∈ (0, ϵ] and

f(x+ ηd) ≤ f(x)

See [Beck, 2017, Lemma 8.2] for more.
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Theorem 1.18 (Fermat’s optimality condition) Let f : Rn → (−∞,+∞] be a proper convex function.
Then

x⋆ ∈ argmin {f(x) : x ∈ Rn}
if and only if 0 ∈ ∂f(x⋆).

Proof: From the definition of a subgradient, we have that

f(x) ≥ f(x⋆) + ⟨g, x− x⋆⟩

But the only way for this to be true is if g = 0. Thus, 0 ∈ ∂f(x⋆).

1.4 Closing example

Say that we are given a constrained optimisation problem with a constrained convex set C ⊆ Rn and a
proper convex function f : Rn → (−∞,+∞]:

min
x∈C

f(x) s.t. f(x) =

N∑
i=1

fi(x) (1.1)

It is quite ordinary in machine learning to construct losses as sums over data points, i, in a data set of size
N . It is also common to constrain the solution set, for instance, we often apply “soft constraints” (i.e.,
regularisation) to prevent an explosion in gradients and to make our functions “nicer”.

We may restate Equation 1.1 using the indicator function to enforce the constraints.

min f(x) + δC(x) (1.2)

This form allows for the classical approach to finding a solution: take a (sub)gradient and solve for zero!
According to Fermat’s optimality condition, Theorem 1.18, global minima must have 0 ∈ ∂ (f(x⋆) + δC(x

⋆)).
However, we require one more result to split subdifferential between the sum.

Theorem 1.19 (Sum rule for subdifferential calculus) Let f1, f2, · · · , fm : Rn → (−∞,+∞] be proper
convex functions and assume that

⋂m
i=1 relint(dom(fi)) ̸= ∅ (i.e., the functions have overlapping domains

and subgradients by Theorem 1.15). Then for any x ∈ Rn

∂

(
m∑
i=1

fi

)
(x) =

m∑
i=1

∂fi(x)

See [Beck, 2017, Theorem 3.40] for more.

Using this theorem, we achieve the following.

0 ∈ ∂ (f(x⋆) + δC(x
⋆))

0 ∈ ∂f(x⋆) + ∂δC(x
⋆)

Clearly, some vector g ∈ Rn must exist such that g ∈ ∂f(x⋆) and −g ∈ ∂δC(x
⋆). However, we note that

∂δC(x) = {g ∈ Rn : ∀y ∈ C, 0 ≥ ⟨g, y − x⟩} = NC(x) and since we assume that x, y ∈ C, x ̸= y, then the
only setting of g is zero! Hence, if a global minimum of f is within the constrained set C, the minimum will
remain unchanged by the application of constraints.
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