
MILA Optimisation Crash Course Winter 2024

Lecture 2: February 21
Lecturer: Damien Scieur Scribe(s): Mehran Shakerinava, Danilo Vucetic

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this crash course only with the permission of the Instructor.

These are the scribe notes for the second lecture of the optimisation crash course at MILA organised by
Quentin Bertrand, Damien Scieur, Lucas Maes, and Danilo Vucetic. The purpose of this course is to
provide proofs for standard optimisation techniques in order to help practitioners better understand why
their algorithms learn. Here is the course web page.

2.1 Recapitulation

Last week we focused on minimising smooth functions and smooth convex functions. We saw that with simply
an assumption of smoothness, we could use gradient descent to achieve convergence rate in the inequality
2.1. Further, when assuming a function was both smooth and convex, we were able to show that a much
stronger convergence guarantee could be achieved, see the inequality 2.2. Note that the latter is stronger
because we are guaranteed to be getting closer to the minima x⋆ on each iteration of the algorithm whereas
the former just states that the norm of the gradient is bounded.

min
k∈[0,N ]

∥∥∇f(xk)
∥∥2 ≤ 2L

N
(f(x0)− f(x⋆)) (2.1)

f(xN )− f(x∗) ≤ 1

N

L

2

∥∥(x∗ − x0)
∥∥2 (2.2)

2.2 Introduction

We define our problem setting similarly to the last lecture. We have a function f : R→ R that we would like
to minimise. We would like to generate a sequence of inputs, {xk}k∈[0,N ], that decrease the function value
until the minimum, x⋆, is reached. However, we will assume our function f is non-smooth, and as such,
may not be upper-bounded by a parabola [1]. In this setting, we still want to show some guarantees on the
rate of convergence (e.g., ∇f(xk) → 0, or f(xk) − f(x⋆) → 0, etc.). Figure 2.2 illustrates the difficulties of
optimising a non-smooth function, namely, oscillation in the iterates.

This lecture starts by introducing non-smooth optimisation and subgradients. We then see how to derive
convergence guarantees based on the definitions of subgradient descent and convexity. Then, to bypass
the slow convergence rate of subgradient descent, we introduce dual averaging and show how to derive an
optimisation algorithm for the method [2].

2-1
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Figure 2.1: Left: Smooth function optimised via gradient descent. Right: Non-smooth function optimised
via gradient descent showing the oscillatory nature of the sequence of points. Stolen from [1].

2.3 Preliminaries

Gradient descent is characterized by the following equation.

xk+1 = xk − α∇xf(x
k) (2.3)

Lemma 2.1 The Cauchy–Schwarz inequality is as follows. Let u, v ∈ Rp.

|⟨u, v⟩| ≤ ∥u∥∥v∥

Note as well that the norm of a scalar is its absolute value, i.e., ∥a∥ = |a|.

Definition 2.2 A continuously differentiable function f : Rp → R with x, y ∈ Rp is L-smooth if

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥. (2.4)

From [1] and [3].

Definition 2.3 A function f : Rp → R with x, y ∈ Rp is convex if and only if its domain is a convex set
(see [1], to be defined) and if for all α ∈ [0, 1] it satisfies

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (2.5)

Lemma 2.4 A convex function f is lower-bounded by a line, i.e.,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩. (2.6)

2.4 Non-smooth Functions and their Minima

Non-smooth functions appear all over the place in optimisation problems. Below are some examples.

(a) Let f(x) = |x|. We have

“∇f(x)” =

{
1 if x ≥ 0

−1 if x ≤ 0
.

Then ∥∇f(−ε)−∇f(ε)∥ = |1− (−1)| = 2 ̸≤ L · 2ε and f is non-smooth.
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(b) Maximum of linear functions:

min
x

max
i

aTi x

(c) Min-max bilinear games:

min
x∈∆n

max
y∈∆m

xTAy

(d) Others:

• ∥x∥1
• ∥x∥0
• ReLU(x)

• − log(x)

•
√
x

• minx maxi fi(x)

• More...

A non-smooth function cannot be bounded from above by a parabola in the way that we found in the last
lecture. Instead, when optimising non-smooth functions, we must rely exclusively on the lower bound of
Lemma 2.4 that results from the convexity of the function. Note, however, that for this lower bound to hold,
we require ∇f(x), which may not exist in certain portions of the domain of a non-smooth function (i.e., a
non-smooth function is not differentiable everywhere). To counteract this difficulty, we use subgradients.

Definition 2.5 The subgradients of a non-smooth function f at a point x ∈ Rd is the set of vectors ∂f(x)
such that convexity holds. That is, ∂f(x) is the set of subgradients of f(x) if

f(y) ≥ f(x) + ⟨g, y − x⟩, ∀g ∈ ∂f(x).

For example, if f(x) = |x|, then the subgradients of f(x) would be the set

∂f(x) =


{1} if x > 0

{−1} if x < 0

[−1, 1] if x = 0

. (2.7)

Notice how at x = 0, the subgradient can take any value between -1 and 1. This is because any of those
values satisfy the convexity lower bound.

Assuming that f is convex, and that the domain of f is a convex set Q, we make two further assumptions
on the subgradients of f .1

1. The subgradients must be bounded. This means we are dealing with finite subgradients, or equivalently,
that ∇f(x) is Lipshitz. G ∈ R.

max
x∈Q
∥∂f(x)∥ ≤ G

1For more on convex sets see [3].
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2. The distance between any two points in the domain of the function (what we have called the convex
set Q), is bounded by the diameter of the set, D ∈ R.

max
x∈Q

∥∥x− x0
∥∥2

2
≤ D

Subgradient descent is defined similarly to gradient descent except, as Damien said, “we don’t have gradients
so we replace them with subgradients and cross our fingers.” Note that the learning rate αk is no longer a
constant. Since non-smooth functions have discontinuities, the norm of the gradient may not decrease as we
approach the minimum. Thus, to encourage subgradient descent to converge, we must continually decrease
the learning rate. Refer again to the absolute value example from Equation 2.7 and Figure 2.2 to understand
this phenomenon better.

Definition 2.6 Subgradient descent is characterised by the following, where gk ∈ ∂f(x)

xk+1 = xk − αkgk (2.8)

Theorem 2.7 Convex non-smooth functions optimised with subgradient descent converge with the following
guarantee, where xBEST is the best iterate found over k steps.

f(xBEST)− f(x⋆) ≤ 1

2
O
(

1√
k

)

Proof: We start by expanding the squared norm
∥∥xk+1 − x⋆

∥∥2, where xk+1 = xk −αkgk via Definition 2.6.
Then we use a property of convexity via Lemma 2.4.∥∥xk+1 − x⋆

∥∥2 =
∥∥xk − αkgk − x⋆

∥∥2
=
∥∥xk − x⋆

∥∥2 + α2
k ∥gk∥

2 − 2αk⟨gk, xk − x⋆⟩

≤
∥∥xk − x⋆

∥∥2 + α2
k ∥gk∥

2 − 2αk

(
f(xk)− f(x⋆)

)
Notice that

∥∥xk − x⋆
∥∥2 can be expanded similarly to

∥∥xk+1 − x⋆
∥∥2. This is a recurrence which can be

expanded to yield the following∥∥xk+1 − x⋆
∥∥2 ≤ ∥∥xk − x⋆

∥∥2 + α2
k ∥gk∥

2 − 2αk

(
f(xk)− f(x⋆)

)
=
∥∥xk−1 − αk−1gk−1 − x⋆

∥∥2 + α2
k ∥gk∥

2 − 2αk

(
f(xk)− f(x⋆)

)
=
∥∥xk−1 − x⋆

∥∥2 + α2
k−1 ∥gk−1∥2 + α2

k ∥gk∥
2 − 2αk

(
f(xk)− f(x⋆)

)
− 2αk−1⟨gk−1, x

k−1 − x⋆⟩

≤
∥∥xk−1 − x⋆

∥∥2 + α2
k−1 ∥gk−1∥2 + α2

k ∥gk∥
2 − 2αk

(
f(xk)− f(x⋆)

)
− 2αk−1

(
f(xk−1)− f(x⋆)

)
· · ·∥∥xk+1 − x⋆

∥∥2 ≤ ∥∥x0 − x⋆
∥∥2 + k∑

i=0

α2
i ∥gi∥

2 − 2

k∑
i=0

αi

(
f(xi)− f(x⋆)

)

Using the assumptions from above, we know that
∥∥x0 − x⋆

∥∥2 ≤ D, ∥gi∥2 ≤ G2, and 0 ≤
∥∥xk+1 − x⋆

∥∥2.
In addition, note that f(xBEST) − f(x⋆) ≤ f(xi) − f(x⋆). Plugging these in and rearranging, we get the
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following.

0 ≤ D +G2
k∑

i=0

α2
i − 2

k∑
i=0

αi

(
f(xi)− f(x⋆)

)
2

k∑
i=0

αi

(
f(xi)− f(x⋆)

)
≤ D +G2

k∑
i=0

α2
i

2
(
f(xBEST)− f(x⋆)

) k∑
i=0

αi ≤ D +G2
k∑

i=0

α2
i

f(xBEST)− f(x⋆) ≤ 1

2

(
1∑k

i=0 αi

D +

∑k
i=0 α

2
i∑k

i=0 αi

G2

)

To finish the proof, we need to define a learning rate schedule that takes the bracketed term on the right

hand side to zero. Since we know that the learning rate must decrease, we define αi ≈ O
(

1√
i+1

)
. However,

for the simplicity of analysis, we assume from the start that we’ll take k steps and choose αi =
1√
k+1

. We

get
∑k

i=0 αi =
√
k + 1 and

∑k
i=0 α

2
i = 1. In the next lecture we will investigate what happens with different

settings of the learning rate. For more information refer to [4]. Now, we can state the result from the
theorem.

f(xBEST)− f(x⋆) ≤ 1

2

(
D +G2

) 1√
k + 1

∈ 1

2
O
(

1√
k + 1

)

Note that subgradient descent doesn’t ensure that the iterates are monotonically decreasing as we saw with
gradient descent on smooth or convex functions. This is a direct consequence of not having a smoothness-
based upper-bound on the function. Note as well that the learning rate αi should decrease on each iteration,
leading to the kth subgradient gk contributing less to the optimisation than prior subgradients despite being
closer to the minimum (and likely more informative). That is, the convergence rate is slow. To fix this issue,
dual averaging uses the definition of convexity to construct an average lower-bound on the function.

2.5 Dual Averaging

Intuition. Gradient descent uses upper bounds while dual averaging uses lower bounds.

Convexity provides lower bounds at every visited point xi.

f(x) ≥ f(x0) + gT0 (x− x0)

f(x) ≥ f(x1) + gT1 (x− x1)

...

f(x) ≥ f(xk) + gTk (x− xk)

Taking a weighted average of these inequalities we arrive at

f(x) ≥
∑

i αi(f(x
i) + gTi (x− xi))∑

i αi
. (2.9)
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Moreover,

min
x∈X

f(x) ≥ min
x∈X

∑
i αi(f(x

i) + gTi (x− xi))∑
i αi

. (2.10)

We will try to find a “dual” solution that lower bounds f⋆.

Problem: If X is unbounded (e.g., Rd), then minx∈X Linear(x) = −∞. To mitigate this, we add a regular-

isation term to Equation 2.9: µk

2

∥∥x− x0
∥∥2.

Proposition 2.8 Dual averaging (first ingredient). The update rule for dual averaging is achieved my the
following minimisation problem

xk+1 = arg min
x∈Rd

{∑
i αi(f(x

i) + gTi (x− xi))∑
i αi

+
µk

2

∥∥x− x0
∥∥2}

Proof: We begin by taking the gradient with respect to x, over the terms in the argmin. Let αi = 1, let
µk = 1√

1+k
, and let Sk+1 =

∑k
j=0 gj

0 = ∇x

(∑k
i=0 αi(f(x

i) + gTi (x− xi))∑k
i=0 αi

+
µk

2

∥∥x− x0
∥∥2)

=
1

1 + k

(
k∑

i=0

(∇xf(x
i) +∇xg

T
i (x− xi))

)
+

1

2
√
1 + k

∇x

∥∥x− x0
∥∥2

=
1

1 + k

(
k∑

i=0

gi

)
+

1√
1 + k

(x− x0)

x = x0 − 1√
k + 1

(
k∑

i=0

gi

)

x = x0 − 1√
k + 1

Sk+1

Finally, with xk+1 ← x, we find the update rule for dual averaging.

xk+1 = x0 − 1√
k + 1

Sk+1 (2.11)

Typically αi = 1 and µk = 1√
k+1

. The algorithm outputs x̂k =
∑k

i=0 xi

k+1 .

What if the domain is not bounded? The following theorem shows that we can get by without the bounded
domain assumption.

Theorem 2.9 If αi = 1 and µk = O
(

1√
k

)
, then

1

2

∥∥xk − x⋆
∥∥2 ≤ ∥∥x0 − x⋆

∥∥2 +O(G2), (2.12)

where G satisfies ∥∇f(x)∥ ≤ G for all x.
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Proof: Starting from the dual averaging update rule of Equation 2.11 and working from 1
2

∥∥xk − x⋆
∥∥2 we

find the norm is bounded.

1

2

∥∥xk − x⋆
∥∥2 =

1

2

∥∥x0 − Sk − x⋆
∥∥2

=
1

2

∥∥x0 − x⋆
∥∥2 + 1

2

∥∥Sk+1
∥∥2 − ⟨Sk+1, x0 − x⋆⟩

≤ 1

2

∥∥x0 − x⋆
∥∥2 + 1

2

∥∥Sk+1
∥∥2 − ⟨Sk+1, x0 − x⋆⟩+ 1

2

∥∥x0 + Sk+1 − x⋆
∥∥2

=
∥∥x0 − x⋆

∥∥2 + ∥∥Sk+1
∥∥2

=
∥∥x0 − x⋆

∥∥2 +
∥∥∥∥∥∥

k∑
j=0

1√
k + 1

gj

∥∥∥∥∥∥
2

≤
∥∥x0 − x⋆

∥∥2 + k∑
j=0

∥∥∥∥ 1√
k + 1

gj

∥∥∥∥2

≤
∥∥x0 − x⋆

∥∥2 + 1

k + 1

k∑
j=0

G2

=
∥∥x0 − x⋆

∥∥2 +G2

Therefore, ∥xk − x⋆∥2 is always bounded.

The next theorem bounds the error of the dual averaging method.

Theorem 2.10 If αi = 1 and µk = O
(

1√
k

)
, then

f

(∑k
i=0 xi

k + 1

)
− f⋆ ≤ O

(
1√
k + 1

)
· (D +

G2

2
) (2.13)

Proof:

0 =
1

2

∥∥xk+1 − xk+1
∥∥2 =

1

2

∥∥∥∥x0 − Sk+1

√
k + 1

− xk+1

∥∥∥∥2
=

1

2

∥∥x0 − xk+1
∥∥2 + 1

2

∥∥∥∥ Sk+1

√
k + 1

∥∥∥∥2 − ⟨ Sk+1

√
k + 1

, x0 − xk+1⟩

≤ 1

2

(
2D +G2

)
+

1√
k + 1

k∑
j=0

⟨gj , x0 − xk+1⟩

Now, solving from below, we find an inequality for the inner product, since we know that the right-hand side
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is solved by xk+1

min
x∈X

f(x) ≥ min
x∈X

∑k
i=0 αi(f(x

i) + ⟨gi, (x− xi)⟩)∑k
i=0 αi

f⋆ ≥
∑k

i=0(f(x
i) + ⟨gi, (xk+1 − xi)⟩)

k + 1

(k + 1)f⋆ ≥
k∑

i=0

(f(xi) + ⟨gi, (xk+1 − xi)⟩)

(k + 1)f⋆ −
k∑

i=0

f(xi) ≥
k∑

i=0

⟨gi, (xk+1 − xi)⟩

Continuing from the previous inequalities using this result, and then applying the definition of convexity 2.3,

0 ≤ 1

2

(
2D +G2

)
+

1√
k + 1

k∑
j=0

⟨gj , x0 − xk+1⟩

≤ 1

2

(
2D +G2

)
+

1√
k + 1

(
(k + 1)f⋆ −

k∑
i=0

f(xi)

)
k + 1

k + 1

k∑
i=0

f(xi)− (k + 1)f⋆ ≤
√
k + 1

2

(
2D +G2

)
(k + 1)f

(
k∑

i=0

xi

k + 1

)
− (k + 1)f⋆ ≤

√
k + 1

2

(
2D +G2

)
f

(
k∑

i=0

xi

k + 1

)
− f⋆ ≤

(
D +

G2

2

)
1√
k + 1

This completes the proof and gives us the final step to understand Algorithm 1.

Algorithm 1 Dual Averaging Algorithm

Initialize x0, S0 = ∂f(x0).
for i = 0 to k do
Si+1 = Si + ∂f(xi)

xi+1 = x0 − Si+1√
i+1

x̂i+1 = i
i+1 x̂

i + 1
i+1x

i+1

end for
return x̂k+1

Exercises

1. Re-derive bound for subgradient method.

2. Prove formula for xk+1 = argminx∈Rd

{∑
i αi(f(x

i)+gT
i (x−xi))∑

i αi
+ µk

2

∥∥x− x0
∥∥2}.
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