
MILA Optimisation Crash Course Winter 2024

Lecture 4: March 6th
Lecturer: Damien Scieur Scribe(s): Marco Jiralerspong, Behnoush Khavari, Danilo Vucetic

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this crash course only with the permission of the Instructor.

These are the scribe notes for the fourth lecture of the optimisation crash course at MILA organised by
Quentin Bertrand, Damien Scieur, Lucas Maes, and Danilo Vucetic. The purpose of this course is to
provide proofs for standard optimisation techniques in order to help practitioners better understand why
their algorithms learn. Here is the course web page.

4.1 Recapitulation

As we saw in the two preceding lectures there is a major difference between gradient descent (GD) and sub-
gradient descent/dual averaging (DA) algorithms; GD leverages the smoothness assumption on the function
to be minimized and uses the upper-bounding parabola, while DA works based on minimizing the line (plus
a regularization term) that lower-bounds the function. One uses overly optimistic iterates while the other is
too cautions.

For the GD algorithm we proved a convergence rate over the value of the function w.r.t. the minimum
value, of order O( 1

K ) after K gradient steps for the convex case and later we saw that this convergence rate
automatically increases to O(1 − µ

L )
K for strongly convex functions (by automatically, we mean with the

same algorithm we get a better convergence rate for a better-behaved function).

For the DA algorithm we proved that even if the function f is non-smooth, by leveraging the convexity of
the function we only need to adjust the learning rate appropriately to get a convergence rate of O( 1√

K
).

4.2 Introduction

In this lecture, we are again interested in minimising some function f(x), analysing the iterates of the
optimisation algorithm to derive convergence bounds. This lecture will focus on Nesterov’s acceleration
algorithm, which produces a substantially better convergence rate than gradient descent. The algorithm
will be introduced via the combination of dual averaging (this time on smooth functions) and gradient
descent, which in itself is a novel, but surprisingly intuitive, derivation. Finally, while the convergence rate
of Nesterov’s acceleration is better than raw gradient descent, the function evaluated at the iterates is not
guaranteed to be monotonically decreasing.

4.3 Preliminaries

Lemma 4.1 The Cauchy–Schwarz inequality is as follows. Let u, v ∈ Rp.

|⟨u, v⟩| ≤ ∥u∥∥v∥
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Note as well that the norm of a scalar is its absolute value, i.e., ∥a∥ = |a|.

Definition 4.2 A continuously differentiable function f : Rp → R with x, y ∈ Rp is L-smooth if

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥. (4.1)

From [1] and [2].

Lemma 4.3 A smooth function f is upper-bounded by a parabola, i.e.,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 . (4.2)

Definition 4.4 A function f : Rp → R with x, y ∈ Rp is convex if and only if its domain is a convex set
(see [1], to be defined) and if for all α ∈ [0, 1] it satisfies

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (4.3)

Lemma 4.5 A convex function f is lower-bounded by a line, i.e.,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩. (4.4)

Definition 4.6 Derivatives are defined by the following limit.

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)

h

Definition 4.7 Gradient descent is characterized by the following equation.

xk+1 = xk − α∇xf(x
k) (4.5)

Definition 4.8 The chain rule on a composition of functions 1. Let f : Rp → R, z : R → Rp, and
h(λ) := (f ◦ z)(λ). The derivative of the composition with respect to λ ∈ R is defined as follows.

d

dλ
(f ◦ z)(λ) = ⟨∇zf(z(λ)),

d

dλ
z(λ)⟩

Consequently, we can define the definite integral of the above by the following equation.

f(z(b))− f(z(a)) =

∫ b

a

⟨∇zf(z(λ)),
d

dλ
z(λ)⟩ dλ

1See here for more information

https://en.wikipedia.org/wiki/Gradient_theorem
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Aside

For the class of smooth and convex functions, for any sequence of iterates xk : x0 +
∑k

i=0 αi∇f(xi),
it can be shown that:

∃f(x) : f(xk)− f∗ ≥ O

(
1

k2

)
(f(x0)− f∗),

i.e. any gradient based method will at least have a convergence rate of O
(

1
k2

)
. Meanwhile, for

gradient descent, we get a rate of f(xk)− f∗ ≤ O( 1k )(f(x0)− f∗).

Given the gap between the two rates (O
(

1
k2

)
≤? ≤ O

(
1
k

)
), would it be possible construct a method

that improves upon the GD rate using both smoothness and convexity? This was an open question
for twenty years until Nesterov’s work!

4.4 Nesterov’s Acceleration

The idea of Nesterov acceleration is to leverage both the smoothness and convexity properties of the function
by using both the upper-bounding parabola and the lower-bounding line to find a more effective update at
each step. That is, at each update step k we have two choices for calculating the next step from the current
value xk:

yk+1 = xk − 1

L
∇f(xk) (GD step which only exploits the upper bound). (4.6)

zk+1 = x0 −
1

µk

(∑
αi∇f(xi)∑

αi

)
(DA step which only exploits the lower bound). (4.7)

Now, Nesterov suggests to combine the above updates as follows:

xk+1 = βkyk+1 + (1− βk)zk+1 (4.8)

4.4.1 Notation

Before turning to the proof/justification of the third formula, we would like to clarify the above notation
that we will continue to use in the rest of this draft.

• xi: iterates of Nesterov’s acceleration

• yi: iterates of gradient descent

• zi: iterates of dual averaging

• (αi, µi): dual averaging parameters

• Ak =
∑k

i=0 αi

• βi: coefficients for linear interpolation between GD and DA
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4.5 Derivation of Nesterov’s formula

The question now is what values should we assign to the parameters of the iterates mentioned above (i.e.
αk, µk, βk) to get a better convergence rate than GD/DA? For this, we will use 2 inequalities and 1
relation. Combined with setting the appropriate parameter values, this will yield a convergence rate of
O
(

1
k2

)
!

4.5.1 Derivation ingredients

The first inequality is valid for the GD iterates:

f(yk+1) ≤ f(xk)−
1

2L
∥∇f(xk)∥2 (4.9)

This is what we already found while proving the convergence rate for smooth functions (Theorem 1.7 in
the first lecture), and tells us that GD steps with correct learning rate (defined based on the smoothness
coefficient L) always reduce the value of a smooth function.

The second inequality comes from the DA updates and is based on a lower bound valid for convex functions:

αk

Ak
[(f(x∗) ≥ f(xk) +∇f(xk)(x

∗ − xk)] (4.10)

Finally, we use a relation that comes from the dual averaging update:

zk+1 = z0 −
1

µk

∑k
i=0 αi∇f(xi)

Ak
. (4.11)

Notice that the above update rule comes from what we saw in lecture 2, Proposition 2.8. That is, by
minimizing the key expression of dual averaging (weighted average of the convexity-based lower bounds at
all K iteration steps plus the regularization term with the coefficient µ) in Proposition 2.8 we arrive to the
above update equation for DA.

Let’s now manipulate (4.11). We first rearrange the equality, multiply both sides by the factor µkAk and

also break the sum
∑k

i=0 to
∑k−1

i=0 and the single k-th term which is αk∇f(xk) as below:

µkAk(zk+1 − z0) = −
k−1∑
i=0

αi∇f(xi)− αk∇f(xk) (4.12)

Notice that the summation term
∑k−1

i=0 αi∇f(xi) can be again written in terms of the DA updates from the
DA update equation (4.11), i.e.

k−1∑
i=0

αi∇f(xi) = µk−1Ak−1(zk − z0).

Then, replacing this into (4.12) we get:

µkAk(zk+1 − z0)− µk−1Ak−1(zk − z0) = −αk∇f(xk).



Lecture 4: March 6th 4-5

Now, if we make the simplifying assumption that for all k we set µkAk = C, the above equation can be
rewritten as:

C(zk+1 − x∗) = C(zk − x∗)− αk∇f(xk).

In the above, −Cz0 terms on the left/right side of the equation cancelled out and we replaced them with
−Cx∗ as this will be useful later. By taking the squared norm of both sides we get:

C2 ∥zk+1 − x∗∥2 = C2 ∥zk − x∗∥2 + α2
k ∥∇f(xk)∥2 − 2αk C ⟨∇f(xk), zk − x∗⟩

With some rearranging, the final relation we will use is:

αk⟨∇f(xk), zk − x∗⟩ = C

2
∥zk − x∗∥2 + α2

k

2C
∥∇f(xk)∥2 −

C

2
∥zk+1 − x∗∥2 . (4.13)

4.5.2 Derivation

1. Combine inequalities

Until this point, we have two inequalities and one relation that we needed for our proof. Now, we start
by combining the two first inequalities. This corresponds to the information we gain at a given step. It
straightforwardly gives us the following inequality:

Ak

[
f(yk+1)− f(xk) +

1

2L
∥∇f(yk)∥2

]
+ αk [f(xk)− f(x∗) +∇f(xk)(x

∗ − xk)] ≤ 0.

2. Reorganization

We then reorganize the inequality, adding and subtracting a Ak[f(xk)− f(x∗)] term:

Ak

[
f(yk+1)− f(x∗)

]
− (Ak − αk)[f(xk)− f(x∗)] +

Ak

2L
∥∇f(yk)∥2 + αk∇f(xk)(x

∗ − xk) ≤ 0

3. Conversion

We first replace Ak − αk by Ak−1 (by definition of Ak). We can then convert the f(xk)− f(x∗) to yk using
convexity. Specifically, f(yk) ≥ f(xk)+∇f(xk)(yk−xk). If we multiply the inequality by (−Ak−1), we have:

−Ak−1f(xk) ≤ −Ak−1f(yk) +Ak−1∇f(xk)(yk − xk).

We can then replace the −Ak−1f(xk) by the right side of the inequality and rearrange terms to get:

[
f(yk+1)− f(x∗)

]
Ak −Ak−1[f(yk)− f(x∗)] +

Ak

2L
∥∇f(yk)∥2

+∇f(xk)[αk(x
∗ − xk) +Ak−1(yk − xk)] ≤ 0

4. Nesterov’s magic

We now use a bit of magic, in the sense that we already know the correct iterates for the derivation:
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Akxk := Ak−1yk + αkzk (4.14)

We use them to simplify the last term:

∇f(xk)[αk(x
∗ − xk) +Ak−1(yk − xk)]

= ∇f(xk)[αkx
∗ − (αk +Ak−1)xk +Ak−1yk]

= ∇f(xk)[αkx
∗ −Akxk +Ak−1yk] (Using the definition of Ak)

= ∇f(xk)[αk(x
∗ − zk)] (Using the Nesterov iterates)

5. Bringing it all together

Finally, we use the DA relation 4.5.1 to replace the last term and get the following expression:

Ak

[
f(yk+1)− f(x∗)

]
−Ak−1[f(yk)− f(x∗)] +

C ∥zk+1 − x∗∥2

2

−C ∥zk − x∗∥2

2
+

[
Ak

2L
− α2

k

2C

]
∥∇f(xk)∥2 ≤ 0

(4.15)

This is almost a recurrence except for the last term! To fix this, we want the following to be 0:

Ak

2L
− α2

k

2C
=⇒ C = L and Ak = α2

k (4.16)

Solving the above yields:
Ak−1 + αk = α2

k =⇒ αk ∼ k,Ak ∼ k2.

Finally, our recurrence is:

Ak

[
f(yk+1)− f(x∗)

]
+

C ∥zk+1 − x∗∥2

2
≤ Ak−1[f(yk)− f(x∗)] +

C ∥zk − x∗∥2

2
. (4.17)

Thus, from the above, we have that the full set of Nesterov iterates is:

Nesterov Iterates

yk+1 := xk − 1

L
∇f(xk) (GD step). (4.18)

zk+1 := zk − αk

L
∇f(xk) (DA step after using µkAk = C = L). (4.19)

xk+1 :=
Akyk+1 + αk+1zk+1

Ak+1
(Mixing used in 4.14). (4.20)

Theorem 4.9 (Convergence rate of Nesterov acceleration) Given the iterates defined above, with:

1. µkAk = L,

2. Ak = α2
k = (Ak −Ak−1)

2.

Then, f(yk+1)− f(x∗) ≤ L
2

∥x0−x∗∥2

Ak
and Ak ∼ (k+1)2

4 .
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Proof:

[f(yk+1)− f(x∗)]Ak ≤ [f(yk+1)− f(x∗)]Ak +
L

2
∥zk+1 − x∗∥2 (Adding a nonnegative term)

≤ [f(yk)− f(x∗)]Ak−1 +
L

2
∥zk − x∗∥2 (From 4.17)

≤ · · ·

≤ [f(y0)− f(x∗)] A0︸︷︷︸
=0

+
L

2

∥∥∥∥∥∥ z0︸︷︷︸
=x0

−x∗

∥∥∥∥∥∥
2

=⇒ f(yk+1)− f(x∗) ≤ L

2

∥x0 − x∗∥2

Ak

Aside

This is a proof by Lyapunov function. The goal of such proofs is to find a Lyapunov function denoted
ϕk such that ϕk ≤ ϕk−1. Applying this recursively implies that ϕk ≤ ϕ0.

Here, we let:

ϕk := [f(yk)− f(x∗)]Ak +
L

2
∥zk − x∗∥2 (4.21)

Then, since it just corresponds to [f(yk)− f(x∗)]Ak + a nonnegative term:

[f(yk)− f(x∗)]Ak ≤ ϕ0

f(yk)− f(x∗) ≤ ϕ0

Ak

4.6 Nesterov Momentum

Idea: The goal is to combine the dual-averaging and mixing steps into one to only have 2 iterates.

We begin by setting the αk, Ak such that:

Ak = α2
k, Ak = Ak−1 + αk. (4.22)

Then, the zk iterates follow:

zk+1 = zk − αk

L
∇f(xk)

= (xk − Ak−1yk
Ak

)
Ak

αk
− αk

L
∇f(xk) (solving for zk in the mixing step 4.20).

=
Ak

αk
xk − αk

L
∇f(xk)︸ ︷︷ ︸

=αkyk+1

−Ak−1yk
αk

(using
Ak

αk
= αk and the GD step 4.18).

= αkyk+1 + (1− αk)yk (−Ak−1

αk
can be rewritten as (1− αk) using 4.22).
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This can be rewritten as:
zk+1 − yk+1 = (1− αk)[yk − yk + 1] (4.23)

Thus, the mixing term can be rewritten as:

xk+1 =
Akyk+1 + αk+1zk+1

Ak+1

= yk+1 +
αk+1

Ak+1
[zk+1 − yk+1] (Using

Akyk+1

Ak+1
= yk+1 −

αk+1

Ak+1
yk+1).

= yk+1 +
αk+1

Ak+1︸ ︷︷ ︸
1

αk+1

(1− αk)(yk − yk+1) (Using 4.23).

= yk+1 +
1− αk

αk+1
(yk − yk+1)

Thus, the mixing term can be written solely as a function of yk, giving us the following updates:

Nesterov Momentum

yk+1 = xk − 1

L
∇f(xk) (4.24)

xk+1 = yk+1 +
1− αk

αk+1︸ ︷︷ ︸
−k−1
k+1

[yk − yk+1] (4.25)
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