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1 History

GD: Wiy1 = W — an(U)t)

Problem: difference of curvature in badly conditioned quadratics.

GD momentum: w1 = wy — NV f(we) + Blwy — wi—1)
t+1

equivalently: w1 = wi— n(z Brwi—;)
i=0

Idea: using a different learning rate per coordinate, adjusted by the scale of
the gradients in that coordinate.

AdaGrad (Duchi et al., 2011): wypq = wy — nG;l/ZVf(wt)

t
Gy = Zgig:
i=0

Too expensive, use diagonal instead

w1 = wy —n x diag(Gy + eId) ™V f(wy)

if we note v := diag(Gy), with elementwise division:

Wesr = wy — nvf(wt)
Vit e
Problem: G; goes to infinity with time, learning rate shrink.
eRMSProp, 2012 (Root Mean Square Propagation) introduced by Geoff
Hinton as a Coursera lecture (lecture 6 on neural networks).
eNever published, but over 7500 citations !
eLecture was given by Geoff Hinton, but RMSProp was invented by his
student, Tijmen Tieleman. History did not give the right credits.




_ V f(w)
W41 = Wt — nm

RMSProp (T. Tieleman, G. Hinton, 2012):

with

Vr1 = Bove + (1 — Ba) [V f (wy)]?

eDenominator identical to Adam !

Momentum works, RMSProp works, why not combine them ?

eHinton writes: "Momentum does not help as much as it normally does.
Needs more investigation.”, and "It works best if the RMS of the recent gra-
dients is used to divide the correction rather than the jump in the direction of
accumulated corrections”.

eHinton’s momentum was by adding S(w; — wy—1). This is not equivalent
anymore to Zfié B'w,_; ! Adam adds momentum similarly to the later, and
introduces bias correction:

(Adaptive Moment Estimation)

my

Adam (D.P Kingma, J. Ba, 2014): wip1 =w; —1n
) \/’Dt—f—E

mey1 = Pime + (1 — B1)V f(wig)
Vi1 = Bove + (1 — B2) [V f(wigq)]?

_ me
my =
1—pf
_ Ut
V¢t = —F
1—p4

emomentum of non-rescaled direction, instead of rescaled updates.

2 Bias correction and momentum expression

Contrary to what many have said, no difference between doing
mep1 = Pimg + (1= B1)Vf

miy1 = Prmg + Vf

besides a rescaling of n by 1 — ;.

em; and v; are biased towards 0. Bias correction fixes that and means we
don’t have to ”pick up speed”.

oeThe direction does not change ! Only magnitude. With 5; = 0.9 and
B2 = 0.999, at step 1, we multiply by % = 0.32 the step size at init. Then
reaches a minimum of 0.152 at the 12th step, and increases back to 0.3 at 100

steps and 0.8 at 1000 steps.



3 Adam’s theoretical guarantees

Not going to go over proof !

Was found to use unreasonable assumptions AND to be wrong.

Credit to David Martinez Rubio MSc thesis (2017).

eAssumes distance between all iterates is bounded.

eImplicitly assumes @ increases with t.

elmplicitly assumes |V f;(z;);| < 1

e After a telescoping sum, obtain ZJT;Ot ty7, should be Z]T;Ot VET+ j77. Then
they bound ZJT;()t 477 by mistake, and their resulting last step is proven to not
be true in general.

eMultiple papers claiming to prove convergence without changing the update
step.

4 Intuition of why second moments works

Questions:

eis the update in the span of gradients ?

— Nesterov’s lower bound doesnt apply !

eis the optimizer rotation invariant ?

— Adam only works in the standard base, which is not very well captured
today.

4.1 Link to Newton

Assume quadratic with diagonal hessian Q, f(z) = ' Qz. Sample z; from a

noise € with anisotropic variance o2. We have Vf(x;); = Q€;. Thus, v; =

2 x EMA(€?). v, ends up approximating Q% x o2.
The update of RMSProp becomes

Wi41 = Wi — my = Wy — g(VQf(wt))_1Vf(wt)

"
Y sziUQ

This is Newton’s method !

4.2 Link to noise in the gradient

In the above expression, if each coordinate has its own std o;, then the learning
rate is rescaled by o, ! Variance reduction !

esimple example with two functions, one coordinate identical, the other co-
ordinate with one flat and one highly curved function.

4.3 Link to feature imbalance

eNeed to scale the update based on how frequent a feature is, thus why it works
well on NLP and not on images.



4.4 Link to Transformer architecture

eDifferent blocks means different behavior, means different hyperparameters.
Having LR adaptive by weight is useful.
5 Connection to other methods

SignGD : with 81 = 1 and 2 = 1, recover SignGD. Explains its stabilization
properties.

NAdam : Compute m; and v; identically, but update in the average of my
and V f(w;), similarly to Nesterov’s trick

Amsgrad : 0; = max,(vs). Doesn’t work so well. Based on a mistake in
Adam’s original paper, better theoretical guarantees.



