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1 History

GD: wt+1 = wt − η∇f(wt)

Problem: difference of curvature in badly conditioned quadratics.

GD momentum: wt+1 = wt − η∇f(wt) + β(wt − wt−1)

equivalently: wt+1 = wt − η(

t+1∑
i=0

βiwt−i)

Idea: using a different learning rate per coordinate, adjusted by the scale of
the gradients in that coordinate.

AdaGrad (Duchi et al., 2011): wt+1 = wt − ηG
−1/2
t ∇f(wt)

Gt =

t∑
i=0

gig
⊤
i

Too expensive, use diagonal instead

wt+1 = wt − η × diag(Gt + ϵId)−1/2∇f(wt)

if we note vt := diag(Gt), with elementwise division:

wt+1 = wt − η
∇f(wt)√
vt + ϵ

Problem: Gt goes to infinity with time, learning rate shrink.
•RMSProp, 2012 (Root Mean Square Propagation) introduced by Geoff

Hinton as a Coursera lecture (lecture 6 on neural networks).
•Never published, but over 7500 citations !
•Lecture was given by Geoff Hinton, but RMSProp was invented by his

student, Tijmen Tieleman. History did not give the right credits.
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RMSProp (T. Tieleman, G. Hinton, 2012): wt+1 = wt − η
∇f(wt)√
vt + ϵ

with

vt+1 = β2vt + (1− β2)[∇f(wt)]
2

•Denominator identical to Adam !
Momentum works, RMSProp works, why not combine them ?
•Hinton writes: ”Momentum does not help as much as it normally does.

Needs more investigation.”, and ”It works best if the RMS of the recent gra-
dients is used to divide the correction rather than the jump in the direction of
accumulated corrections”.

•Hinton’s momentum was by adding β(wt − wt−1). This is not equivalent

anymore to
∑t+1

i=0 β
iwt−i ! Adam adds momentum similarly to the later, and

introduces bias correction:
(Adaptive Moment Estimation)

Adam (D.P Kingma, J. Ba, 2014): wt+1 = wt − η
m̄t√
v̄t + ϵ

mt+1 = β1mt + (1− β1)∇f(wt+1)

vt+1 = β2vt + (1− β2)[∇f(wt+1)]
2

m̄t =
mt

1− βt
1

v̄t =
vt

1− βt
2

•momentum of non-rescaled direction, instead of rescaled updates.

2 Bias correction and momentum expression

Contrary to what many have said, no difference between doing

mt+1 = β1mt + (1− β1)∇f

mt+1 = β1mt +∇f

besides a rescaling of η by 1− β1.
•mt and vt are biased towards 0. Bias correction fixes that and means we

don’t have to ”pick up speed”.
•The direction does not change ! Only magnitude. With β1 = 0.9 and

β2 = 0.999, at step 1, we multiply by 0.032
0.1 = 0.32 the step size at init. Then

reaches a minimum of 0.152 at the 12th step, and increases back to 0.3 at 100
steps and 0.8 at 1000 steps.

2



3 Adam’s theoretical guarantees

Not going to go over proof !
Was found to use unreasonable assumptions AND to be wrong.
Credit to David Mart́ınez Rubio MSc thesis (2017).
•Assumes distance between all iterates is bounded.
•Implicitly assumes

√
v̄t,i
αt

increases with t.
•Implicitly assumes |∇ft(xt)i| ≤ 1

•After a telescoping sum, obtain
∑T−t

j=0 tγj , should be
∑T−t

j=0

√
t+ jγj . Then

they bound
∑T−t

j=0 jγj by mistake, and their resulting last step is proven to not
be true in general.

•Multiple papers claiming to prove convergence without changing the update
step.

4 Intuition of why second moments works

Questions:
•is the update in the span of gradients ?
→ Nesterov’s lower bound doesnt apply !
•is the optimizer rotation invariant ?
→ Adam only works in the standard base, which is not very well captured

today.

4.1 Link to Newton

Assume quadratic with diagonal hessian Q, f(x) = x⊤Qx. Sample xt from a
noise ϵ with anisotropic variance σ2. We have ∇f(xt)i = Qiiϵi. Thus, vt =
Q2

ii × EMA(ϵ2i ). vt ends up approximating Q2
ii × σ2.

The update of RMSProp becomes

wt+1 = wt −
η√
Q2

iiσ
2
mt = wt −

η

σ
(∇2f(wt))

−1∇f(wt)

This is Newton’s method !

4.2 Link to noise in the gradient

In the above expression, if each coordinate has its own std σi, then the learning
rate is rescaled by σ−1

i . Variance reduction !
•simple example with two functions, one coordinate identical, the other co-

ordinate with one flat and one highly curved function.

4.3 Link to feature imbalance

•Need to scale the update based on how frequent a feature is, thus why it works
well on NLP and not on images.
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4.4 Link to Transformer architecture

•Different blocks means different behavior, means different hyperparameters.
Having LR adaptive by weight is useful.

5 Connection to other methods

SignGD : with β1 = 1 and β2 = 1, recover SignGD. Explains its stabilization
properties.

NAdam : Compute mt and vt identically, but update in the average of mt

and ∇f(wt), similarly to Nesterov’s trick

Amsgrad : v̂t = maxs(vs). Doesn’t work so well. Based on a mistake in
Adam’s original paper, better theoretical guarantees.
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